

Modelling needs for field crops sector

Tania ROUGIER, PhD – Scientific Manager

March, the 24th 2017 - Lisbon - FOOD MC

History

Mars				0040
2000	2005	2009	2013	2018

Lisbon strategy

3% of EU GDP

French competitivness clusters launched

Phase 2 for clusters: « projects factory »

Phase 3 for clusters: « products factory »

Horizon

2020

French competitiveness clusters: their missions

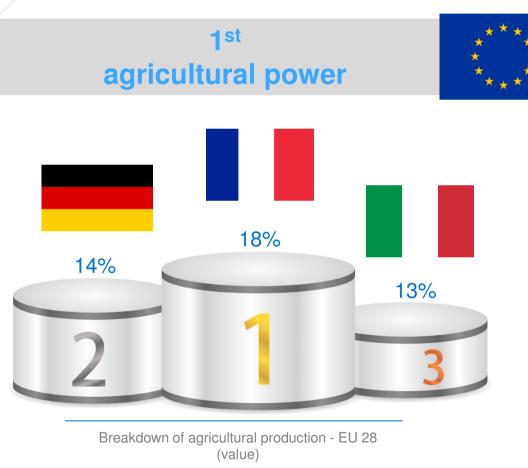
Collaborative project germination
Technical animation
Networking

Sustain
and assist projects
Funding managment
Project managment

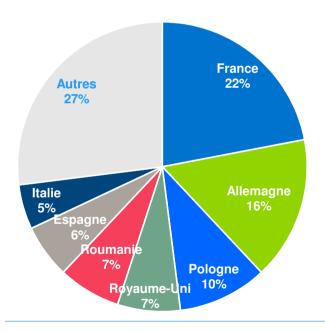
Anticipate
Scientific, patent,
technical, marketing
survey

Private funding Internationalisation

SME assistance


Competencies needs,

RESEARCH – TRAINING - INDUSTRIES

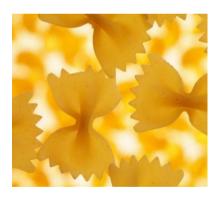


Céréales Vallée Cluster

Cereal production by country – EU 28 (volume)

Source: Eurostat 2016

9,2 billion euros of trade surplus for agriculture


= 76 rafale planes

70% of French farm production processed by the Agro-food industries

New opportunities, future-oriented

20% of annual growth for the bio-sourced plastics market

28000 direct jobs in France in vegetal-based chemistry

Céréales Vallée, at the heart of worldwide challenges

Innovating to produce

More

To cope with supply shortages

Better

In line with the economic, social and environmental requirements of sustainability

New things

to produce foods with nutritional design in adequacy with targeted populations

Innovate new applications of renewable carbon

A cluster who enlarges its topic far a whole, sustainable and competitive approach of cereal systems

Economic issue

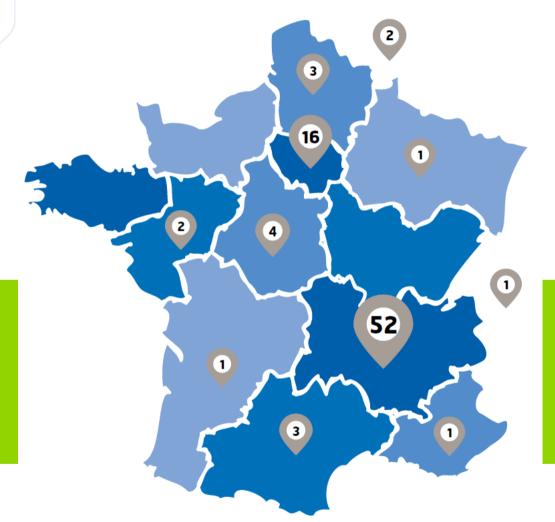
- To insure agriculture production resilience
- To take a chance on new markets opportunity
- To mutualise R&D

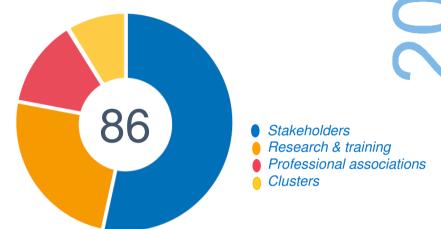
Environmental issue

- To propose alternative inputs solutions
- To diversify protein intakes and limit environmental impact of animal productions

Societal issue

- To fix on territory the high added value activities
- To create stong link between sectors
- To favour attractiveness for agricultural, food and feed iobs





10 years of innovation in cereals

Bringing together the whole field crop value-chain

From seed to consummer

10 years dedicated to catalyse innovation in cereal sector

309

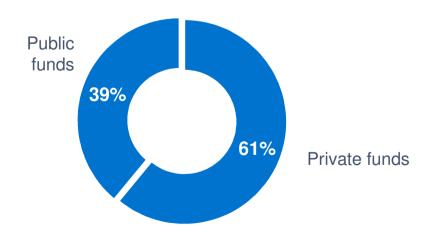
Certified projects

556 partners in projects

95 partners out of France

524 M€ projects

76% R&D


15% Training

5% International

4% Industrial

Optimizing and increasing cereal production

STORAGE AND CONSERVATION

PLANT BREEDING

WATER & NITROGEN
EFFICIENCY AND DISEASE
------RESISTANCE

KNOWLEDGE OF SOILS AND INTERACTIONS SOILS / MICROORGANISMS

NEW TECHNOLOGIES

PLANT PROTECTION AND STIMULANT

Territorial Innovation Lab (LIT) for field crop in Auvergne – Living Lab

2016

Exellence area For Field crop Pioneer in Europe

- Welcoming space for projects blow-up
- Open and participative innovation
- Co creation with and for farmers
- Involvment of every concerning person in area
- Concept, Design, Diffuse innovating solutions
- Agroécology inspiration

Agricultural equipment

OAD

Training tools

New sectors

Sensors

Organisationnal innovation

Farming practices

Robot

New Products

new varieties

Biocontrol products

Scientific Knowledge

Project examples

MOPAD - Micro-Organisms for a Sustainable Agriculture

- To develop biocontrol approaches using micro-organisms or micro-organism extracts to control fusarium in bread wheat
- micro-organisms found in soils (bacteria, fungi, oomycetes) and microbial and micro-algae
- seed protection, pre-sowing and post-sowing spray treatments in fields

PARRASOL – For a renewable and higher rewarding farming through soil

- To Produce more, respecting environment, consumming less fuel and inputs, to enhance economic reward, to answer to arable areas decrease, world population increase and quality requirements
- Innovative tires with better traction, lower compaction, added with soil sensors => tools for decision support
- Math models for soil compaction and plant genetic phenotype

Modelisation needs in agriculture

Genetic data management

- To detect literature relevant information by numeric automatic systems
- Combine genetic reading and relevant genomic analysis

Precision farming

- sensors, signal treatment
- smart inputs and treatments,
- climate change management

Grain quality managment

- Grain filling scheme within plant growing
- To anticipate grain quality for better transformation


Promoting transformation of cereals into high-quality animal feed and products

QUALITY OF LIVESTOCK
PRODUCT

HEALTH AND WELLNESS FOR ANIMALS

HEALTH AND WELLNESS FOR ANIMALS

APPETENCE

RENTABILITÉ DES ÉLEVAGES ET AUTONOMIE DES EXPLOITATIONS

SAFETY SECURITY OF RAW MATERIALS

Project example

- STIMULUS Parietal degradation during Maize feed breeding in France Study of Histological and biochemical parameters
 - Breeding since 70's: higher and stronger maize plant, more efficient against fall
 - Different parietal structure and nutritional score for milk cattle
 - NIRs Measurements
 - Prediction model of nutritionnal value of feed from histological and biochemical analysis, and further more from genetic profil of maize
 - => Better and quicker breeding

Modeling needs

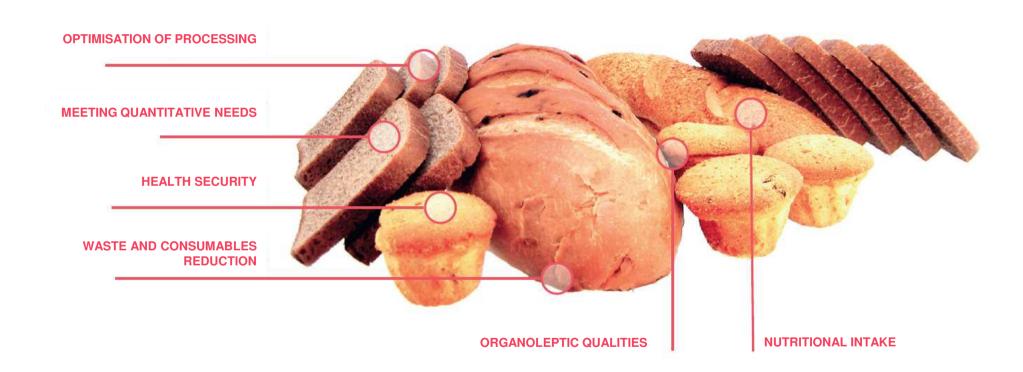

- Nutritional value of feed
 - from biochemical analysis
 - From grain, through processes

Image analysis to predict appetize

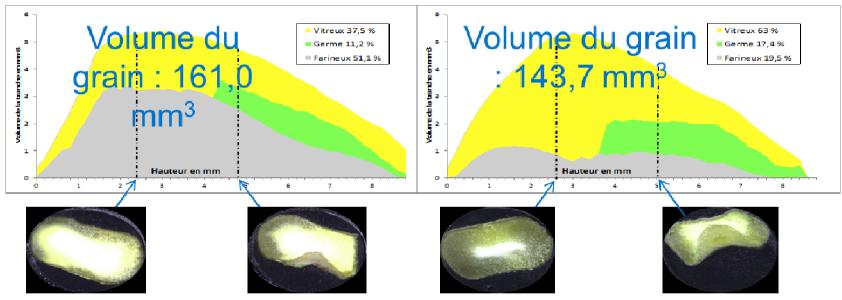
Satisfaying basic for needs while balancing nutrition and qualities of use

Project examples

NOMAC – New resources to control the digestion of cereal products

- Low energy cereal product to prevent obesity
- Predict the in vivo energy intake depending on their structure
- Gastric emptying and digestion kinetics can be adjusted thanks to natural diversity
- Starch structure viscosity gastric emptying and glycemic index

GRANoFLAKES – to develop innovative solutions in maize sector for cornflakes


- Identify the best maize variety for cornflakes processes
- Modelize components behaviour through extrusion to lead to an optimized cornflakes considering taste, structure and nutrition
- Predict behaviour of cornflakes in milk (cold and warm)
- Predict grain composition and structure through different varieties growing

Example: Structure of a maize grain

Quantification of germ, floury and vitrous parts by analysing grain section

Modelling needs

To improve product self-conservation

- Modellise and predict lipid oxydation process
- Modellise water and salt transfers

Process flexibility and optimisation, higher rate, waste limitation

- Cooking: heat transfert, « new » cooking process (microwaves ans ohmic)
- Surdough behaviour, fermentation step optimisation
- Predicting dough behaviour in process from biochemical/rheological analysis
- Oil extraction rate within nutritional preservation

Quality prediction

- Storage, drying of grain
- Fail, braking, dust, weight loss

Nutritional quality prediction from formulation

Specially for artisanal transformation, collective food cooking

Giving value to a renewable resource

RECOVERING CEREALS CONSTITUENTS

PROCESS DEVELOPMENT ENVIRONMENT-FRIENDLY

ENSURING A CIRCULAR ECONOMY

Project examples

ECO-C-REAL – To optimize eco-extraction from bran with natural solvants

- Bran contains active molecules specially wanted by cosmetic, pharmacy or nutrition industries
- Terpens are strong natural solvants (from wood or agriproducts) that can replace hexan

Modelling needs

- To optimize extraction rate
- To anticipate green chemistry processes
 - Fermentation, Bioconversion...
- Biomaterials
 - Technical behaviour
 - Permeability

How to work with Céréales Vallée's members?

How to work with Céréales Vallée?

- Collaborative projects
- Business partnerchip
- PhD co-management
- Preliminary tests...

=> Cereales Vallee will bring you to qualified french industrial partners from cereales and fields crop sectors

tania.rougier@cereales-vallee.org

Cluster's team

